
LAProof: A Library of Formal Proofs of Accuracy
and Correctness for Linear Algebra Programs

Ariel E. Kellison ∗ §, Andrew W. Appel †, Mohit Tekriwal ‡ and David Bindel ∗
∗ Dept. of Computer Science, Cornell University, Ithaca, NY, USA

† Dept. of Computer Science, Princeton University, Princeton, NJ, USA
‡ Dept. of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

§ Sandia National Laboratories, Livermore, California, USA

Abstract—The LAProof library provides formal machine-
checked proofs of the accuracy of basic linear algebra operations:
inner product using conventional multiply and add, inner product
using fused multiply-add, scaled matrix-vector and matrix-matrix
multiplication, and scaled vector and matrix addition. These
proofs can connect to concrete implementations of low-level basic
linear algebra subprograms; as a proof of concept we present a
machine-checked correctness proof of a C function implementing
sparse matrix-vector multiplication using the compressed sparse
row format. Our accuracy proofs are backward error bounds
and mixed backward-forward error bounds that account for
underflow, proved subject to no assumptions except a low-level
formal model of IEEE-754 arithmetic. We treat low-order error
terms concretely, not approximating as O(u2).

Index Terms—rounding error analysis, formal verification,
floating-point arithmetic, program verification

I. INTRODUCTION

Numerical linear algebra is widely used across computa-
tional disciplines and is serving an increasingly important
role in emerging applications for embedded systems. The
Basic Linear Algebra Subprograms (BLAS) [1], [2] provide a
modular, reliable standard defining a set of the most common
linear algebra operations such as the inner product and the
matrix-vector product. The software layer implementing the
operations defined by BLAS is often highly optimized and
architecture-specific, serving as an interface between hardware
and application software. While implementations of BLAS
may differ in practice, an implementation should guarantee
numerical accuracy with respect to widely accepted rounding
error bounds. In this paper, we report on our development
of the Linear Algebra Proof Library (LAProof), a library
of formal proofs of rounding error analyses for basic linear
algebra operations. LAProof serves as a modular, portable
proof layer between the verification of application software
and the verification of programs implementing operations
defined by BLAS. The LAProof library makes the following
contributions:

• Backward and mixed backward-forward error bounds.
Previous formal rounding error analyses have exclusively
focused on forward error bounds (see related work in
Section V). We provide backward and mixed backward-
forward error bounds. This choice is advantageous from
the perspectives of both proof engineering and numerical
analysis, as it preserves the separation of rounding errors

from the structural conditions of the mathematical prob-
lem being solved by the application software. Further-
more, forward error bounds can be derived directly from
backward and mixed backward-forward error bounds.

• No linearization of error terms. The rounding error asso-
ciated with a sequence of operations accumulates errors
as products of terms of the form (1 + δi), where the
magnitude of each δi is uniformly upper-bounded by the
unit roundoff, u. Typically, numerical analysts simply
linearize the product of these terms, approximating the
error in n operations by nu+O(u2). In LAProof we avoid
such approximations, giving clients of the library access
to error analyses that fully characterize the accumulation
of error in any sequence of operations.

• Minimal assumptions and soundness. The LAProof li-
brary is fully developed inside of the Coq proof assistant,
and assumes only the Flocq [3] specification of the IEEE
754 standard [4] for floating-point arithmetic. LAProof’s
rounding error analysis is therefore sound with respect
to the IEEE standard. Furthermore, the error bounds
provided by LAProof do not assume the absence of
underflow; and where the proofs assume the absence of
overflow, we provide a concrete example of how this
assumption can be discharged for operations where nu-
merical bounds on the terms in a linear algebra expression
are known (see Section IV).

• Connection to sparse matrix implementation in C. To
demonstrate that our accuracy theorems can be seam-
lessly composed with correctness proofs of programs that
use nontrivial data structures, we use LAProof in the
verification of a C program implementing sparse matrix-
vector multiply using the compressed sparse row (CSR)
format.

The remaining sections of the paper clarify the contributions
of the LAProof library. Section II introduces the basic linear
algebra operations provided by LAProof and describes their
formal error bounds. Section III explains the implementations
of the core LAProof operations in the Coq proof assistant,
emphasizing their soundness with respect to the IEEE stan-
dard. Section IV demonstrates how the LAProof library can
be used to guarantee the accuracy of concrete C programs
using a machine-checked correctness proof of a C function

1

implementing CSR matrix-vector multiplication. Section V
situates the LAProof library with respect to related work, and
Section VI discusses the current limitations of LAProof and
future work.

II. OVERVIEW OF THE LIBRARY

The LAProof library provides formal proofs of error bounds
derived from well understood error analyses [5], [6] for the
basic linear algebra operations listed in Tables I, II, and III.
The error bounds for each operation are parameterized by
the precision of the standard IEEE 754 floating-point formats
supported by the Flocq library [3], and are derived using the
standard rounding error model for floating-point arithmetic [6,
sect 2.2]:

fl(a op b) = (a op b)(1 + δ) + ϵ (1)
|δ| ≤ u, |ϵ| ≤ η, δϵ = 0, op ∈ {+,−,×, /,√}

Our formal error bounds are derived in Coq, relying on the
Flocq library’s machine-checked proofs [3] that this standard
error model holds for floating point arithmetic. Throughout
the paper, for a floating-point number with precision p and
maximum exponent e, we denote the unit roundoff by u =
2−p, the underflow threshold by η = 22−e−p, and the exactly
representable numbers in the format by Fp,e.

The LAProof error analysis for each operation is performed
by writing two pure functional programs in Gallina, the func-
tional programming language embedded in Coq: a real-valued
function ϕR(x) defined over Coq’s axiomatic real numbers that
represents the operation in exact arithmetic, and a floating-
point valued function ϕFp,e(x) defined over the IEEE 754
format specified by Flocq. Using these functional programs,
the absolute forward error F is expressed as

F ≜ |ϕR(x)− ϕFp,e
(x)|. (2)

The mixed backward-forward error requires deriving a suitable
perturbation ∆x to the inputs of ϕR and small forward error
term δ̂ such that

ϕFp,e
(x) = ϕR(x+∆x) + δ̂. (3)

The error bounds in LAProof are expressed using the functions
h(n) and g(n,m) to represent the accumulation of error from
rounding normal and denormal numbers, respectively:

h(n) = (1 + u)n − 1. (4)
g(n,m) = nη(1 + h(m)). (5)

A. Vector Operations

The core vector operations in LAProof are the inner (dot)
product (r ← x · y), vector addition (r ← x+ y), summation
(r ←

∑
i xi), and scaling by a constant (r ← αx) . We provide

mixed backward-forward error bounds for the inner product
and scaling by a constant. Given that addition and subtraction
are exact for denormal numbers [7], we provide a strict
backward error bound for summation and vector addition.
Error analyses for scaled vector addition (r ← αx+ βy) and
the vector norms listed in Table I follow by composing error

bounds of the core vector operations. In the remainder of this
section, we sketch the error analyses formalized in LAProof
for the inner product and summation, and discuss some useful
corollaries.

TABLE I
LAPROOF VECTOR OPERATIONS

DOT r ← x · y
sVec r ← αx

SUM r ←
∑

i xi

VecAdd r ← x+ y

VecAXPBY r ← αx+ βy

VecNRM1 r ← ∥x∥1
VecNRM2 r ← ∥x∥2

LAProof provides a formal proof of the following mixed
backward-forward error bound for the inner product of two
vectors assuming the absence of overflow.

Theorem 1 (bfDOT). For any two vectors u, v ∈ Fn
p,e, the

vectors û, δ ∈ Rn and real number c ∈ R exist such that

fl(u · v) = û · v + c, (6)

where |c| ≤ g(n, n) and every kth element of û respects the
bound ûk = uk(1 + δk) with |δk| ≤ h(n).

Proof. The most common exact-arithmetic version of the inner
product computation loops over the elements of u and v to
accumulate the partial sums sk = sk−1 + ukvk, starting from
s1 = u1v1. In floating point, we have s̃1 = u1v1(1 + δ1) + ϵ1
for k = 1, and

s̃k = (s̃k−1 + ukvk(1 + δk) + ϵk)(1 + γk) (7)

with |δk| ≤ u, |γk| ≤ u, and |ϵk| ≤ η. If we define γ1 = 0,
we have

s̃k =

k∑
j=1

(ujvj(1 + δj) + ϵj)

k∏
ℓ=j

(1 + γℓ)

 .

Now define

γ̃j =

n∏
ℓ=j

(1 + γℓ)− 1, δ̃j = (1 + δj)(1 + γ̃j)− 1

for which we have the bounds

|γ̃j | ≤ h(n− j) ≤ h(n− 1), |δ̃j | ≤ h(n− j + 1) ≤ h(n).

The computed dot product is

s̃n =

n∑
j=1

ujvj(1 + δ̃j) +

n∑
j=1

ϵj(1 + γ̃j),

or, equivalently
s̃n = û · v + c

2

where |c| ≤ g(n, n) and ûj = uj(1+δ̃j). This is a mixed error
bound because it combines a backward error term ûj and a
forward error term c.

In the absence of underflow, using a linear approximation to
the error function h reduces the bound in Theorem 1 to that
given in the literature [6, sec 3.1].

We prove the following as corollaries to Theorem 1.
a) Forward error: Given equation (6), the forward error

bound

|fl(u · v)− (u · v)| ≤ S(u, v)h(n) + h(n, n− 1) (8)

where

S(x, y) =
n∑

i=1

|xi · yi| (9)

is straightforward to derive. Linearizing the error function
h reduces the forward error bound to that given in the
literature [8].

b) Sparsity: Assuming that one of the vectors u, v ∈ Fn
p,e

is sparse, we prove the theorem sbfDOT, in which the error
functions g and h in theorem bfDOT are parameterized by
the smallest number of nonzero elements occurring in either
vector.

c) FMA: If the fused multiply-add operation is used to
compute an inner product of the vectors u, v ∈ Fn

p,e , the
floating-point partial sums in equation 7 become

s̃k = FMA(uk, vk, s̃k−1) = (ukvk + s̃k−1)(1 + δk) + ϵk

where |δk| ≤ u and |ϵk| ≤ η. Following a similar analysis
to that of Theorem 1, we prove that the FMA inner product
respects the error bounds given in equations 6 and 8.

For summing vector elements, the LAProof library provides
the following backward error bound.

Theorem 2 (bSUM). For any vector u ∈ Fn
p,e, the vector

û ∈ Rn exists such that

fl

(
n∑

i=1

ui

)
=

n∑
i=1

ûi, (10)

where every kth element of û respects the bound
ûk = uk(1 + δk) with |δk| ≤ h(n− 1).

d) Order of summation: Theorem 2 holds as an upper
bound on the absolute forward error for any permutation of
the vector u. At a low level, the formalization of vectors in
LAProof uses Coq lists, for which is it easy to prove this fact.

B. Matrix-Vector Operations

The core matrix-vector operation provided to clients of the
LAProof library is the matrix-vector product (r ← Ax). An
error bound for the scaled matrix-vector product (r ← αAx)
is also provided. The error bound for matrix-vector multipli-
cation follows from the mixed backward-forward error bound
for the inner product given in the previous section, following
the standard analysis [6, sec 3.5]. Assuming the absence of

overflow, LAproof provides the following error bound for
matrix-vector multiplication.

Theorem 3 (bfMV). For any vector u ∈ Fn
p,e, and matrix

M ∈ Fm×n
p,e , there exist a matrix ∆M ∈ Rm×n and vector

η ∈ Rn such that

fl(Mu) = (M +∆M)u+ η, (11)

where every element of the backward error term η respects the
bound |η| ≤ g(n, n) and each element of the forward error
term ∆M respects the bound |∆M | ≤ h(n)|M |.

TABLE II
LAPROOF MATRIX-VECTOR OPERATIONS

MV r ← Ax

sMV r ← αAx

GEMV r ← αAx+ βy

a) Conditions for the absence of overflow: In Section IV
we demonstrate how the LAProof implementation of matrix-
vector multiplication can connect to concrete implementations
of low-level basic linear algebra subprograms. In order to
guarantee that the concrete implementation respects the error
bound given in Theorem 3, the assumption of the absence of
overflow must be discharged. The LAProof library guarantees
the absence of overflow for matrix-vector multiplication under
the following conditions.

Theorem 4 (finiteMV). For any vector u ∈ Fn
p,e, and matrix

M ∈ Fm×n
p,e , if the magnitude of each of the elements of u

and M is upper bounded by the square root of(
2e − η

1 + u
− g(n, n− 1)

)(
1

1 + n(1 + u)n

)
(12)

and g(n+ 1, n) ≤ 2e, then the floating-point result of fl(Mu)
is a vector with elements in the floating-point format Fp,e.

The upper bound in Theorem 4 is achieved in many settings.
As an example, for binary32 and n = 10e6 the magnitude of
the elements of u and M must be less than 1.8e16.

C. Matrix Operations

The core matrix operations in LAProof are the matrix-
matrix product (R ← AB), matrix addition (R ← A + B),
and scaling by a constant (R ← αA). The formal rounding
error analysis for these operations follows from the mixed
backward-forward error bounds for the matrix-vector product,
vector addition, and vector scaling. The LAProof library
provides a forward error bound for the matrix-matrix product
following the literature [6], [9], a backward error bound
for matrix addition, and a mixed backward-forward error
bound for matrix scaling. Formal mixed error bounds are also
provided for scaled matrix-matrix multiplication (R← αAB),
the addition of a scaled matrices (R← αA+βY), and a scaled
matrix-matrix product plus a scaled matrix (R← αAX+βY).

3

TABLE III
LAPROOF MATRIX OPERATIONS

sMat R← αA

MM R← AB

MatAdd R← A+B

sMM R← αAB

MatAXPBY R← αX + βY

GEMM R← αAX + βY

III. FUNCTIONAL MODELS

LAProof operations are pure functional programs written
in Gallina, the functional programming language embedded
in Coq; we refer to these programs as functional models.
These operations are Coq functions over Coq lists (or lists of
lists) of either Coq’s axiomatic real numbers or a type ftype

t, which denotes IEEE 754 compliant binary floating-point
formats with the precision and maximum exponent supplied
by the argument t. The ftype function is provided by the
VCFloat package [10], [11], and is a user-friendly wrapper
around the Flocq formalization of IEEE binary floating-point
formats. We begin our description of the LAProof functional
models by first introducing the low-level Coq definitions of
matrices and vectors upon which they depend.

A. Matrices and vectors

Matrices and vectors in LAProof are defined using Coq lists
over an arbitrary element type T.

Definition matrix (T : Type) := list (list T).
Definition vector (T : Type) := list T.

For example, a vector of double-precision floats in LAProof
would have type vector (ftype Tdouble). Henceforth, we
will use the notation of Fn

p,e and vector (ftype t) inter-
changeably, and similarly for matrices. The LAProof library
is developed under the assumption that matrices are in row-
major form.

B. Vector operations

The fundamental operation in the LAProof library is the
inner (dot) product. In order to define real-valued and floating-
point valued functional models for the inner product, it suffices
to define a generic polymorphic function DOT over an arbitrary
implicit type T. DOT takes two vectors u and v with elements
are of type T, and the functions add and mul, and produces a
result of type T.

Variables add mul : T → T → T.
Variables u v : vector T.

Definition DOT : T :=
fold left add (map (uncurry mul) (combine u v)).

We define a floating-point functional model DOTF by supply-
ing DOT with a generic ftype t type and the appropriate

functions over this type; LAProof uses the VCFloat functions
BPLUS and BMULT over ftype t. These VCFloat functions are
simply wrappers around the corresponding IEEE operators
defined in Flocq, so LAProof inherits the soundness of these
operators with respect to the IEEE specification formalized by
Flocq. A real-valued functional model DOTR is similarly de-
fined with the addition and multiplication operations supplied
by Coq’s theory of axiomatic reals. Using these functional
models, the mixed backward-forward error bound given in
Theorem 1 is stated in Coq as follows.
Variable t : type.
Variables u v: vector (ftype t).
Hypothesis Hfin: is_finite (DOTF u v) = true.
Let n := (length v).

Theorem bfDOT: ∃ (u′ : list R) (η : R),
FT2R (DOTF u v) = DOTR u′ (map FT2R v) + η
∧ (∀i : N, (i < n) → ∃δ : R. u′

i = (1 + δ) · FT2R(vi)
∧ |δ| ≤ h(n) ∧ |η| ≤ g(n, n)).

where the function FT2R : ftype t → R is an injection from
the floating-point values of type ftype t to real values.

Floating-point and real-valued functional models for the re-
maining vector operations of addition, summation, and scaling
by a constant are defined from the following polymorphic
functions over a generic element type T,
Variables add mul : T → T → T.

Definition VecAdd (u v : vector T): vector T
:= map (uncurry add) (combine u v).

Definition SUM: vector T → T
:= fold right add.

Definition sVec (a: T) : vector T → vector T
:= map (mul a).

C. Matrix-vector operations
The core matrix vector operation implemented in LAProof

is the matrix-vector product. We denote the floating-point and
real valued functional models for matrix-vector multiplication
implemented by LAProof as MVF and MVR. These functions
are built by supplying the previously defined inner products
(DOTR and DOTF) to a polymorphic function MV defined over an
arbitrary implicit element type T:
Variable dot : vector T → vector T → T.
Variables (A : matrix T) (v : vector T).

Definition MV : vector T
:= map (fun a ⇒ dot a v) A.

A formal statement of the mixed backward-forward error
bound for matrix-vector multiplication given in Theorem 3
requires defining suitable functional models for matrix addi-
tion.

D. Matrix operations
Functional models for floating-point and real valued matrix

addition and scaling by a constant are defined in LAProof from
the following polymorphic functions.

4

Definition map2 {A B C: Type}(f:A→B→C)(x:A)(y:B)
:= map (uncurry f) (combine x y).

Definition sMat {T: Type} (mul: T→T→T) (a: T)
:= map (map (mul a)) .

Definition MatAdd {T: Type} (sum: T→ T→T)
:= map2 (map2 add).

Denoting real-valued MatAdd and real-valued VecAdd as +m

and +v , respectively, and floating-point valued and real-valued
MV as ⊗v and ∗v , respectively, the formal LAProof statement
of Theorem 3 is given as follows.

Variable (A : matrix (ftype t)).
Variable (v : vector (ftype t)).
Let m := (length A).
Let n := (length v).
Notation Ar := (map (map FT2R) A).
Notation vr := (map FT2R v).
Hypothesis Hfin : is finite vec (MVF A v).
Hypothesis Hlen : ∀ x, In x A → length x = n.

Theorem bfMV: ∃ (E:matrix R) (η:vector R).
map FT2R (A ⊗v v) = (Ar +m E) ∗v vr +v η
∧ (∀ij : N, (i < m) → (j < n) → |Ei,j | ≤ h(n)|Ari,j |
∧ (∀k : R, In k η → |k| ≤ g(n, n))
∧ eq size E A ∧ length η = m.

Finally, the real-valed and floating-point functional models
for the matrix-matrix product are defined using the following
polymorphic function, MM, which utilizes the matrix-vector
product.

Variable dot : vector T → vector T → T.
Variables (A B : matrix T).

Definition MM : matrix T
:= map (fun b ⇒ MV dot A b) B.

E. Extension to MathComp

The correctness of the basic linear algebra operations de-
fined above is supported by formal proofs connecting the
real-valued operations VecAdd, DOT, MV, MatAdd, and MM to
their counterparts in the Mathematical Components (Math-
Comp) Library [12]. We use the mappings from Coq lists
to MathComp matrices and vectors over the reals from Co-
hen et. al [13] to prove that there is an injection from
the LAProof functional models for these core operations to
their corresponding MathComp operations. This mapping is
particularly useful in two cases. Firstly, composing LAProof
mixed backward-forward error bounds for matrix-matrix op-
erations requires utilizing the ring properties of matrices, and
MathComp provides extensive support for automatic rewriting
over ring and field structures. Secondly, the big operators [14]
in MathComp enable intuitive definitions of induced norms
for normwise forward error bounds, which can be derived
from our mixed backward-forward error bounds. Our proofs
of correctness of the LAProof operations with respect to the

10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1

val 10 −2 3 9 3 7 8 7 3 · · · 9 13 4 2 −1

col ind 0 4 0 1 5 1 2 3 0 · · · 4 5 1 4 5
0 2 5 8 16 19

row ptr 0 2 5 8 12 16 19

Fig. 1. An example of the three arrays (val, col_ind, row_ptr) used
to store a matrix compressed sparse row (CSR) format.

struct csr_matrix {
double *val;
unsigned *col_ind, *row_ptr, rows, cols;

};

Listing 1. A CSR struct in C.

MathComp operations allows clients of LAProof to lift the
error bounds derived from the functional models over Coq
lists to theorems over MathComp matrices and vectors.

In the following section, we illustrate how the floating-
point functional models for the basic linear algebra operations
introduced here can be connected to concrete C implementa-
tions, thereby guaranteeing the accuracy of practically useful
programs.

IV. AN ACCURATE AND CORRECT C PROGRAM

In the previous section we described a functional model of
the floating-point matrix-vector product (MVF) and introduced
the formal proof in Coq of its accuracy. In this section,
we describe a C program implementing compressed sparse
row (CSR) matrix-vector multiplication, and a formal proof
in Coq that this program exactly implements the floating-
point functional model. We then compose the accuracy and
correctness proofs in Coq to demonstrate that the C program
is correct and accurate.

A. Sparse matrix-vector product

Compressed sparse row (CSR) is a standard data structure
for sparse matrices that enables fast matrix-vector multiplica-
tions [15, §4.3.1]. The CSR format stores the elements of a
sparse m × n matrix A using three one-dimensional arrays:
a floating-point array val that stores the nonzero elements of
A, an integer array col ind that stores the column indices of
the elements in col ind, and an integer array row ptr that
stores the locations in the array col ind that start a row in A.
Figure 1 shows an example (from [15], adjusted for 0-based
array indexing).

Our C implementation utilizes the CSR data structure given
in Listing 1. The C function implementing sparse matrix-
vector multiplication is shown in Listing 2. We use zero-based

5

void csr mv multiply (struct csr matrix *m,
double *v, double *p) {

unsigned i, rows = m → rows;
double *val = m → val;
unsigned *col ind = m → col ind;
unsigned *row ptr = m → row ptr;
unsigned next=row ptr[0];
for (i = 0; i < rows; i++) {
double s = 0.0;
unsigned h = next;
next = row4 ptr[i+1];
for (h = 0; h < next; h++) {
double x = val[h];
unsigned j = col ind[h];
double y = v[j];
s = fma(x,y,s);

}
p[i]=s;

} }

Listing 2. CSR matrix-vector multiplication in C.

indexing for arrays and matrices. The ith element of row_ptr
points into an offset within val and within col_ind where the
ith row is represented. For row ptr(i) ≤ h < row ptr(i+1),
col ind(h) = j, we have Aij = val(h); and elsewhere
Aij = 0.

B. Verifying the C program

We use VST [16] to specify and verify the C imple-
mentation of sparse matrix-vector multiplication. VST is a
higher-order impredicative logic for the C language embedded
in the Coq proof assistant. As a variant of Hoare logics,
judgements in VST take the familiar form of the Hoare
triple {Pre} c {Post}, where the preconditions Pre and
postcondition Post are assertions on program states. These
assertions (preconditions, postconditions, loop invariants, etc.)
are written as PROP(P) LOCAL(L) SEP(R) where P is a se-
quence of Coq terms of type Prop, L characterizes the values
of local and global variables, and R is a spatial assertion
describing the contents of the heap. In function preconditions,
in place of the LOCAL() part we write PARAMS(); and in
function postconditions, we write RETURN().

The VST specification of the CSR function (csr_mv_spec)
is shown in Listing 3. The specification and its corresponding
proof show that the CSR function calculates the same floating-
point computation as the dense matrix-multiply functional
model, except that where Aij = 0, the dense algorithm
computes Aij · xi + s where the sparse algorithm just uses s.
This is a notable difference in floating-point arithmetic, where
it is not always the case that 0·y+s = s, for instance when y is
∞ or NaN. Even when y and s are finite values in the format,
it is not always true that y·0+s is the same floating-point value
as s because of signed zeros. Finally, even when all elements
of the matrix A and vector x are finite, we cannot assume that
the intermediate results s are finite as the computatation may
introduce overflow.

Definition csr_mv_spec :=
DECLARE _csr_mv_multiply
WITH π1: share, π2: share, π3: share,

m: val, A: matrix Tdouble, v: val,
x: vector Tdouble, p: val

PRE [tptr t_csr, tptr tdouble, tptr tdouble]
PROP(readable_share π1; readable_share π2;

writable_share π3;
matrix_cols A (Zlength x);
matrix_rows A < Int.max_unsigned;
Zlength x < Int.max_unsigned;
Forall finite x;
Forall (Forall finite) A)

PARAMS(m; v; p)
SEP (csr_rep π1 A m;

data_at π2 (tarray tdouble (Zlength x))
(map Vfloat x) v;

data_at_ π3 (tarray tdouble (matrix_rows A
)) p)

POST [tvoid]
EX y: vector Tdouble,
PROP(Forall2 feq y (MVF A x))
RETURN()
SEP (csr_rep π1 A m;

data_at π2 (tarray tdouble (Zlength x))
(map Vfloat x) v;

data_at π3 (tarray tdouble (matrix_rows A))
(map Vfloat y) p).

Listing 3. Function specification for CSR matrix-vector multiply

Thus, when specifying the correctness of matrix-vector
multiplication we must tread carefully: we reason modulo
equivalence relations. We define feq x y to mean that either
both x and y are finite and equal (with +0 = −0), or neither
is finite (both are infinities or NaNs). Our function will have a
precondition that A and x are all finite, and postcondition that
the computed result is feq to the result that a dense matrix
multiply algorithm would compute. For such reasoning we use
Coq’s Parametric Morphism system for reasoning over partial
equivalence relations using rewrite rules [17].

The WITH in the CSR specification csr_mv_spec quantifies
over 8 logical variables that appear in both the precondition
and the postcondition. The variable A is the formal model of
the floating-point matrix, and x is the model of the vector.
Pointer value m is the address of a CSR representation of A,
and v is the address of the array containing values x. π1, π2 are
permission-shares for read access to A and x, and π3 specifies
write permission for address p where the output vector y is to
be stored.

The precondition PRE in csr_mv_spec asserts that, given 3
parameters whose C-language types are (respectively) pointer-
to-struct, pointer-to-double, pointer-to-double;

• PROP: the input arrays are readable and the output array
is writable; every row of the matrix has the same length
as vector x; the dimensions of A and x are representable
as C integers; all the values in A and x are finite;

• PARAMS: the values of the function parameters are the
values m, v, and p, respectively; and

• SEP: the data structures in memory represent A at address

6

m, and x at address v, and address p has an uninitialized
array (to hold the result).

In writing the precondition, we use an abstract data type
representation relation csr_rep to describe the data stored at
address m.

The postcondition POST asserts the following: there exists a
float-vector y that is equivalent to the floating-point product
Ax; this result is stored at address p; and the data at m and v is
undisturbed. Furthermore, VST’s program logic guaratees that
any data not mentioned in the SEP clauses remains undisturbed.

The user-defined representation relation csr_rep A m says
that matrix A is represented as a data structure at address
m. In turn it relies on a functional model of sparse matrices.
We define this functional model at any floating-point type t
(single-precision, double-precision, half, quad, etc.). We prove
lemmas in Coq about the representation relation, and use
those to prove in VST (embedded in Coq) that the C function
satisfies the csr_mv_spec.

V. RELATED WORK

The challenge of finding practically useful methods for
guaranteeing the correctness and accuracy of numerical pro-
grams is an old one. While a variety of approaches have been
successfully explored, formal static analysis methods have
historically been the least prominent. We concentrate here on
the closest related work, which we believe falls into three
fairly distinct categories: formal tools for floating-point error
analysis, formalizations of numerical linear algebra, and end-
to-end machine checked proofs.

Formal tools for floating-point error analysis: There are
several tools that perform rounding error analysis and generate
machine-checkable proof certificates with varying levels of
automation: Gappa [18] is implemented in C++ and produces
proof scripts that can be checked in Coq; PRECiSA [19] is
implemented in Haskell and C and generates proofs in the
PVS [20] proof assistant, FPTaylor [21] is implemented in
OCaml and can produce proof certificates in HOL Light;
VCFloat [10], [11] is implemented in Coq; and Daisy [22]
is implemented in Scala, producing proof scripts that can be
checked by Coq and HOL4 [23]. In general, these tools focus
on automatically obtaining tight forward error bounds for
arithmetic expressions in a given precision—that is, straight-
line loop bodies. The goal of the LAProof library is funda-
mentally different: to provide formal proofs of widely accepted
mixed forward-backward error bounds for standard algorithms
that can be used modularly in larger verification efforts.

Formalizations of numerical linear algebra: With regard
to the basic linear algebra operations, Roux [24] formally
proved forward error bounds in Coq for finite precision inner
product and summation, and used these bounds to derive a
formal mechanized proof of the accuracy of a finite precision
algorithm for the Cholesky decomposition. The author proves
that the formal model for floating-point arithmetic used in their
formalization satisfies the IEEE 754 binary format specified by
Flocq.

End-to-end machine-checked proofs: We demonstrated
the intended functionality of the LAProof library with the
verification of a C program implementing sparse matrix-
vector multiplication. Rather than serving as its own end-
to-end verification effort, the LAProof library is intended to
serve as a proof layer between the verification of application
software and programs implementing operations defined by
BLAS. There are a few end-to-end machine-checked proofs of
numerical programs in the literature that we believe could have
benefited from modular, verified building blocks like those
provided by LAProof.

Boldo and co-authors developed a machine-checked Coq
proof of the correctness and accuracy of a C program imple-
menting a second-order finite difference scheme for solving
the one-dimensional acoustic wave equation [25]. Scaling their
results to higher dimensions would require formal error bounds
for the accuracy of basic linear algebra operations. Similarly,
Kellison and co-authors developed a machine checked proof of
the correctness and accuracy of an implementation of velocity-
Verlet integration of the simple harmonic oscillator [26]. They
obtain a forward error bound for the round off error of their
method, but a mixed backward-forward error result for matrix-
vector multiplication could have produced a tighter and more
general bound.

VI. CONCLUSION

The LAProof library provides a promising modular proof
layer between the verification of application software and the
verification of programs implementing linear algebra opera-
tions defined by the BLAS standard. The formal roundoff
error analysis provided provided by LAProof carefully handles
underflow and overflow, and captures all higher-order error
terms. We have demonstrated a practical case study of how
LAProof can be used as such an interface by connecting the
LAProof implementation of matrix-vector product, for which
LAProof provides a formally guaranteed error bound, to a
C program implementing sparse matrix-vector multiplication
using the compressed sparse row format.

A natural question arises concerning the ease of using the
LAProof library in verification efforts other than the sparse
matrix-vector multiplication example we have described. We
believe that we have made at least two design choices that will
support the porting of LAProof to other verification efforts.

Firstly, rather than using the Mathematical Components
Library [12] directly to define our functional models in Coq,
we chose to implement our functional models using Coq’s
standard lists over arbitrary types. This ensures that LAProof
is a middle ground between the verification of programs using
tools like VST, which tend to use concrete Coq types, and the
abstract and dependent types used by the MathComp library,
which are more useful when proving abstract properties of
programs. Our proofs of correctness of the LAProof oper-
ations with respect to MathComp operations over matrices
and vectors allows clients of LAProof to lift the error bounds
derived from the LAProof functional models over Coq lists to
theorems using MathComp.

7

Secondly, mixed backward-forward error bounds separate
rounding errors from the stability of the mathematical problem
being solved by the application software more clearly than
forward error bounds. The roundoff error analysis provided by
LAProof should therefore be more widely usable than forward
error bounds alone.

A limitation of providing mixed backward forward er-
ror bounds to clients of LAProof is automation. Forward
error analysis requires successively accumulating the error
introduced by each floating-point operation, while backward
error analysis produces bounds of the form of equation (3),
which requires identifying the error terms generated by each
operation that can be propagated back onto the operands.
In comparison to forward error, automated backward error
analysis for numerical software has received limited treatment
in the literature [27].

We conclude by noting that while the roundoff error analy-
ses in LAProof are performed for particular implementations
in Coq, the formal statement of LAProof theorems can serve
as an interface to which other implementations can be shown
to adhere. It is our hope that LAProof can therefore serve as a
proof interface with a reference implementation – in the spirit
of BLAS – in the formal verification of numerical programs.

VII. ACKNOWLEDGMENTS

This research was supported in part by NSF Grants CCF-
2219997 and CCF-2219757, by a U.S. Department of Energy
Computational Science Fellowship DE-SC0021110, and by the
Chateaubriand fellowship program.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525.

REFERENCES

[1] L. S. Blackford, A. Petitet et al., “An updated set of basic
linear algebra subprograms (blas),” ACM Trans. Math. Softw.,
vol. 28, no. 2, p. 135–151, June 2002. [Online]. Available:
https://doi.org/10.1145/567806.567807

[2] J. Dongarra, “Basic linear algebra subprograms technical (BLAST)
forum standard ii,” IJHPCA, vol. 16, pp. 1–111, 05 2002.

[3] S. Boldo and G. Melquiond, “Flocq: A unified library for proving
floating-point algorithms in Coq,” in 2011 IEEE 20th Symposium on
Computer Arithmetic, 2011, pp. 243–252.

[4] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019 (Re-
vision of IEEE 754-2008), pp. 1–84, 2019.

[5] J. W. Demmel, Applied Numerical Linear Algebra. USA: Society for
Industrial and Applied Mathematics, 1997.

[6] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002.

[7] J. R. Hauser, “Handling floating-point exceptions in numeric programs,”
ACM Trans. Program. Lang. Syst., vol. 18, no. 2, p. 139–174, Mar.
1996. [Online]. Available: https://doi.org/10.1145/227699.227701

[8] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J.
Thompson, T. Tung, and D. J. Yoo, “Design, implementation and
testing of extended and mixed precision BLAS,” ACM Trans. Math.
Softw., vol. 28, no. 2, p. 152–205, Jun. 2002. [Online]. Available:
https://doi.org/10.1145/567806.567808

[9] G. W. Stewart, Matrix Algorithms. Society for Industrial and Applied
Mathematics, 1998.

[10] T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin, “A
unified coq framework for verifying c programs with floating-point
computations,” in Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, ser. CPP 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 15–26. [Online].
Available: https://doi.org/10.1145/2854065.2854066

[11] A. W. Appel and A. E. Kellison, “VCFloat2: Floating-point error
analysis in Coq,” 2022. [Online]. Available: https://github.com/VeriNum/
vcfloat/blob/master/doc/vcfloat2.pdf

[12] A. Mahboubi and E. Tassi, Mathematical Components. Zenodo, Sep.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.7118596

[13] J. M. Cohen, Q. Wang, and A. W. Appel, “Verified erasure correction
in Coq with MathComp and VST,” in Computer Aided Verification:
34th International Conference, CAV 2022, Haifa, Israel, August 7–10,
2022, Proceedings, Part II, Berlin, Heidelberg, 2022, p. 272–292.
[Online]. Available: https://doi.org/10.1007/978-3-031-13188-2_14

[14] Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca, “Canonical big op-
erators,” in Theorem Proving in Higher Order Logics, O. A. Mohamed,
C. Muñoz, and S. Tahar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 86–101.

[15] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, 1994.

[16] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “VST-
Floyd: A separation logic tool to verify correctness of C programs,” J.
Autom. Reason., vol. 61, no. 1-4, pp. 367–422, Jun. 2018.

[17] M. Sozeau, “A new look at generalized rewriting in type theory,” in 1st
Coq Workshop Proceedings, H. Herbelin, Ed. Technische Universitaet
Muenchen, Aug. 2009.

[18] S. Boldo, J.-C. Filliâtre, and G. Melquiond, “Combining Coq and Gappa
for certifying floating-point programs,” in International Conference on
Intelligent Computer Mathematics. Springer, 2009, pp. 59–74.

[19] M. M. Moscato, L. Titolo, A. Dutle, and C. A. Muñoz, “Automatic
estimation of verified floating-point round-off errors via static analy-
sis,” in Computer Safety, Reliability, and Security - 36th International
Conference, SAFECOMP’17, 2017, pp. 213–229.

[20] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verification
system,” in Automated Deduction—CADE-11, D. Kapur, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 748–752.

[21] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić,
and G. Gopalakrishnan, “Rigorous estimation of floating-point round-
off errors with symbolic Taylor expansions,” ACM Transactions on
Programming Languages and Systems, vol. 41, no. 1, pp. 1–39, 2018.

[22] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bastian,
“Daisy - framework for analysis and optimization of numerical pro-
grams (tool paper),” in Tools and Algorithms for the Construction and
Analysis of Systems, D. Beyer and M. Huisman, Eds. Cham: Springer
International Publishing, 2018, pp. 270–287.

[23] H. Becker, N. Zyuzin, R. Monat, E. Darulova, M. O. Myreen, and
A. Fox, “A verified certificate checker for finite-precision error bounds
in coq and hol4,” in 2018 Formal Methods in Computer Aided Design
(FMCAD), 2018, pp. 1–10.

[24] P. Roux, “Formal Proofs of Rounding Error Bounds,” Journal
of Automated Reasoning, p. 23, 2015. [Online]. Available: https:
//hal.science/hal-01091189

[25] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, and
P. Weis, “Trusting computations: A mechanized proof from partial
differential equations to actual program,” Computers and Mathematics
with Applications, vol. 68, no. 3, pp. 325–352, 2014.

[26] A. E. Kellison and A. W. Appel, “Verified numerical methods for
ordinary differential equations,” in 15th Int’l Workshop on Numerical
Software Verification, 2022.

[27] Z. Fu, Z. Bai, and Z. Su, “Automated backward error analysis for
numerical code,” SIGPLAN Not., vol. 50, no. 10, p. 639–654, oct 2015.
[Online]. Available: https://doi.org/10.1145/2858965.2814317

8

